Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages 12. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems 34.


At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices5. Here, we demonstrate that solution-processed MoOx/​MoS2 and WOx/​WS2 heterostructures sandwiched between two printed ​silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 102 to 108 Ω combined with low programming voltages of 0.1–0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (<3 nm) oxide layer. With strong nonlinearity in switching dynamics, different mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.

 

  

Affiliations

  1. Nokia Labs Skolkovo, Nokia Technologies, 100, Novaya Str., Skolkovo, Moscow Region 143025, Russia

    • Alexander A. Bessonov,
     
  2. Marina N. Kirikova,
 
  • Dmitrii I. Petukhov &
 
  • Marc J. A. Bailey

  • Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

    • Dmitrii I. Petukhov
  • Sensor Systems, Nokia Technologies, Cambridge CB3 0FA, UK

    • Mark Allen &
     
  • Tapani Ryhänen

Contributions

A.A.B. and M.N.K. discovered the memory effect, formulated the experimental approach, fabricated the samples and performed characterization. D.I.P. and M.A. supported printing experiments, electrical measurements and data analysis. T.R. and M.J.A.B. performed general supervision of the study. A.A.B. prepared the manuscript, with all authors discussing the results and commenting on the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to: 

     

Source: nature.com